
A Step towards Energy Efficient Computing: Redesigning
A Hydrodynamic Application on CPU-GPU

Tingxing Dong∗, Veselin Dobrev†, Tzanio Kolev†, Robert Rieben†,
Stanimire Tomov∗, Jack Dongarra∗

∗Innovative Computing Laboratory, University of Tennessee, Knoxville
†Lawrence Livermore National Laboratory

∗tdong, tomov, dongarra@eecs.utk.edu
†dobrev1,kolev1,rieben1@llnl.gov

ABSTRACT
Power and energy consumption are becoming an increas-
ing concern in high performance computing. Compared to
multi-core CPUs, GPUs have a much better performance per
watt. In this paper we discuss efforts to redesign the most
computation intensive parts of BLAST, an application that
solves the equations for compressible hydrodynamics with
high order finite elements, using GPUs [10, 1]. In order to
exploit the hardware parallelism of GPUs and achieve high
performance, we implemented custom linear algebra kernels.
We intensively optimized our CUDA kernels by exploiting
the memory hierarchy, which exceed the vendor’s library
routines substantially in performance. We proposed an au-
totuning technique to adapt our CUDA kernels to the orders
of the finite element method. Compared to a previous base
implementation, our redesign and optimization lowered the
energy consumption of the GPU in two aspects: 60% less
time to solution and 10% less power required. Compared
to the CPU-only solution, our GPU accelerated BLAST ob-
tained a 2.5× overall speedup and 1.42× energy efficiency
(greenup) using 4th order (Q4) finite elements, and a 1.9×
speedup and 1.27× greenup using 2nd order (Q2) finite ele-
ments.

Keywords
GPU, hydrodynamics, Power, Energy, FEM

1. INTRODUCTION
High performance computing is increasingly becoming power

and energy constrained. The average power of TOP 10 su-
percomputers climbed from 3.2MW in 2010 to 6.6MW in
2013, which is enough to power small towns [2]. DOE has re-
cently set a goal of 20MW for exascale systems, which means
50 GFLOPS per watt; though the current No.1 supercom-
puter Tianhe-2 has already reached 17MW at 0.03 EFLOPS.
Limited by the power budget, more and more computing
clusters seek to install accelerators, such as GPUs, due to
their high floating-point operation capability and energy ef-
ficiency advantage over CPUs, as in Figure 1. The trend of
accelerated supercomputers is indicated in the latest June
2013 ranking of the TOP 500 and the Green 500. In the TOP
500, 51 are powered by GPUs [2]. Although accelerated sys-
tems make up only 10% of the systems, they accomplish
33% of the total computations. In the Green 500, the most
efficient systems powered by K20 surpassed 3 GFLOPS per

watt, up from 2 GFLOPS per watt in the June 2012 ranking
[3].

Figure 1: Performance per watt of NVIDIA GPUs
versus Intel CPUs in double precision.

Energy consumption can be expressed as

Energy = Power · Time

Reducing either factor on the right side of the equation
will help to reduce energy consumption. Reducing proces-
sor power can involve either hardware redesign or software
redesign. Hardware redesign includes changing hardware
threading, power gating or decreasing frequency [4, 5]. A
more power efficient implementation of the same code is a
software aspect. Figure 1 shows the performance per watt
of NVIDIA GPUs and that of Intel CPUs in double preci-
sion floating-point operations, where we use the theoretical
peak performance as the FLOPS and TDP (Thermal Design
Power) as watts.

Most users might be tempted to use TDP (Thermal De-
sign Power) as the power of their application. However,
TDP is only an engineering term and can be vastly different
from the actual power used by applications [7]. A challenge
for most users is that it is impractical to attach a power
meter to monitor the power usage of their application. For-
tunately, for Intel Sandy Bridge and NVIDIA Kepler users,
monitoring and management of power is assisted by using
RAPL and NVML, respectively [8, 9]. With these tools,
computing can be more power aware for users.

In this paper, we redesign a hydrodynamic code on CPU-
GPU clusters. BLAST is a software package that solves the

equations of compressible hydrodynamics using high order
finite element (FE) methods [10, 1]. High order numerical
methods (p-refinement) and/or high resolution meshes (h-
refinement) are introduced, to reveal more refined physical
features as shown in Figure 2. However, for a given number
of degrees of freedom, high order methods are more compu-
tationally intensive than low order methods, as they couple
more degrees of freedom on the mesh. Therefore, the higher
the order of the method, the more FLOPs per memory ac-
cess. The most floating point intensive part of BLAST is
the ”corner force” part which can take up to 55%-80% of
the total run time, increasing with the order of the meth-
ods, but accounts for only 10% of the code. In our CPU-
GPU solution, the FLOP intensive parts, including corner
force computation are accelerated on the GPU, while other
parts are still on the CPU. In order to exploit the hardware
parallelism of GPUs and achieve high performance, we re-
designed the CPU code with CUDA. Most of the target CPU
code are processed into GPU-efficient parallel batched ma-
trix operations, which are expressed by linear algebra rou-
tines(kernels).

Figure 2: Shock triple-point benchmark using Q2-Q1,
Q4-Q3 and Q8-Q7 finite elements from left to right.

Our contributions can be summarized as follows.
1) We reestablish the appeal of high order methods on

GPUs. Compared to low order methods, the speedup and
energy efficiency (greenup) of high order finite elements are
greater.

2) We design custom linear algebra kernels on the GPU
and intensively optimize them. Our optimization results in
less time and less power. The optimized kernels achieve a
substantial improvement in performance compared to the
widely used vendor’s library routines.

3) We analyze the power and energy consumption of a real
application on CPUs and GPUs. Compared to the CPU-
only solution, we show that our hybrid solution obtains both
speedup and greenup.

4) We use CUDA and OpenMP inside MPI in order to ex-
ploit all of the computing resources of multi-core CPU with
Fermi GPUs. To our best knowledge, this is the first time
to apply all three programming methods in hydrodynamics.

5) We present a good weak scaling on the current NO.2
supercomputer ORNL Titan to 4096 computing nodes.

2. THE BLAST ALGORITHM
The BLAST C++ code uses high order finite elements

in a moving Lagrangian frame to solve the Euler equations
of compressible hydrodynamics. It supports 2D (triangles,
quads) and 3D (tets, hexes) unstructured curvilinear meshes.

On a semi-discrete level, the conservation laws of La-
grangian hydrodynamics can be written as:

Momentum Conservation: MV
dv

dt
= −F · 1, (1)

Energy Conservation:
de

dt
= M−1

E FT · v , (2)

Equation of Motion:
dx

dt
= v, (3)

where v, e, and x are the unknown velocity, specific in-
ternal energy, and grid position, respectively. 1 is a vec-
tor with each element 1. The kinematic mass matrix MV

is the density weighted inner product of continuous kine-
matic basis functions and is therefore global, symmetric,
and sparse. We solve the linear system of (1) using a pre-
conditioned conjugate gradient (PCG) iterative method at
each time step. The thermodynamic mass matrix ME is
the density weighted inner product of discontinuous ther-
modynamic basis functions and is therefore symmetric and
block diagonal, with each block consisting of a local dense
matrix. We solve the linear system of (2) by pre-computing
the inverse of each local dense matrix at the beginning of
a simulation and applying it at each time step using sparse
linear algebra routines. The rectangular matrix F, called
the generalized force matrix, depends on the hydrodynamic
state (v, e,x), and needs to be evaluated at every time step.

Evaluation of the matrix F, which can be assembled from
the generalized corner force matrices {Fz} computed in ev-
ery zone (or element) of the computational mesh. Evaluat-
ing Fz is a locally FLOP-intensive process based on trans-
forming each zone back to the reference element where we
apply a quadrature rule with points {q̂k} and weights {αk}:

(Fz)ij =

Z
Ωz(t)

(σ : ∇~wi) φj

≈
X

k

αkσ̂(~̂qk) : J−1
z (~̂qk)∇̂ ~̂wi(~̂qk) φ̂j(~̂qk)|Jz(~̂qk)|. (4)

where, Jz is the Jacobian matrix, and the hat symbol indi-
cates the quantity is on the reference zone. Other quantities
will be explained shortly. In the CPU code, F is constructed
by two loops: an outer loop over zones (for each z) in the
domain and an inner loop over the quadrature points (for
each k) in each zone. Each zone and quadrature point com-
putes a component of the corner forces associated with it
independently.

A local corner force matrix Fz can be written as

Fz = AzB
T,

with

(Az)ik = αkσ̂(~̂qk) : J−1
z (~̂qk)∇̂ ~̂wi(~̂qk) |Jz(~̂qk)|, (5)

and

(B)jk = φ̂j(~̂qk) . (6)

The matrix B contains the values of the thermodynamic ba-
sis functions sampled at quadrature points on the reference

element φ̂j(~̂qk) and is of dimension number of thermody-
namic basis functions by number of quadrature points. The
values stored in the matrix B are constant in time. The

matrix Az contains the values of the gradient of the kine-
matic basis functions sampled at quadrature points on the

reference element ∇̂ ~̂wi(~̂qk) and is of dimension number of
kinematic basis functions by number of quadrature points.

This matrix also contains terms which depend on the ge-
ometry of the current zone, z. Finite element zones are
defined by a parametric mapping Φz from a reference zone.
The Jacobian matrix Jz = ∇̂Φz is non-singular and varies
inside each zone. The determinant |Jz| can be viewed as

local volume. The total stress tensor σ̂(~̂qk) requires evalu-
ation at each time step and involves significant amounts of
computation including singular value decomposition (SVD),
eigenvalue, eigenvector, equation of state (EOS) evaluations,
etc., at each quadrature point (see [1] for more details).

A finite element solution is specified by the order of the
kinematic and thermodynamic bases. In practice, we choose
the order of the thermodynamic basis to be one less than the
kinematic basis, where a particular method is designated as
Qk-Qk−1, k ≥ 1, corresponding to a continuous kinematic
basis in the space Qk and a discontinuous thermodynamic
basis in the space Qk−1. High order methods (as illustrated
in Figure 3) can lead to better numerical approximations at
the cost of more basis functions and quadrature points in
the evaluation of (2). By increasing the order of the finite
element method, k, we can arbitrarily increase the floating
point intensity of the corner force kernel of (2) as well as the
overall algorithm of (1) - (3).

Figure 3: Schematic depiction of bilinear (Q1-Q0),
biquadratic (Q2-Q1), and bicubic (Q3-Q2) zones.

Here we summarize the basic steps of the overall BLAST
MPI-based parallel algorithm:

1) Read mesh, material properties and input parameters;
2) Partition domain across MPI tasks and refine mesh;
3) Compute initial time step;
4) Loop over zones in the sub-domain of each MPI task:
(4.1)Loop over quadrature points in each zone;
(4.2)Compute corner force associated with each quadra-

ture point and update time step;
5) find minimum time step and assemble zone contribution

to global linear system;
6) Solve global linear system for new accelerations;
7) Update velocities, positions and internal energy;
8) Go to 4 if final time is not yet reached, otherwise exit.
Step 4 is associated with the corner force calculation of

(2) which is a computational hot spot where we focus our
effort. Step 6 solves the linear equation (using a simple PCG
solver) of (1). Table 1 shows timing data for various high
order methods in 2D and 3D. The computational cost of
both the corner force and CG solver increase as the order of
the method k and dimension are increased, though the cost
of the corner force calculation grows faster than that of the
CG solver.

3. HYBRID PROGRAMMING MODEL
Multi-GPU communication relies on CPU-GPU commu-

nication on a single node and CPU-CPU communication

Table 1: Profile of BLAST on Xeon CPU: The cor-
ner force kernel consumes 55% − 75% of total time.
The CG solver takes 20%− 34%.

Method Corner Force CG Solver Total time
2D: Q4-Q3 198.6 53.6 262.7
2D: Q3-Q2 72.6 26.2 103.7
3D: Q2-Q1 90.0 56.7 164.0

across nodes. Therefore, a multi-GPU implementation re-
quires CUDA to interact with other CPU programming mod-
els like MPI, OpenMP or Pthreads. Our implementation
is composed of the following two layers of parallelism: (1)
MPI-based parallel domain-partitioning and communication
between CPU; (2) CUDA based parallel corner force calcu-
lation inside each MPI task.

3.1 CUDA Implementation
We implemented the momentum (1) and energy (2) equa-

tions on the GPU. In the CUDA programming guide [11],
the term host is used to refer to CPU and device to GPU.
Hereafter in this paper, we follow this practice. The CUDA
implementation is composed of the following set of kernels:

3.1.1 CUDA Code Redesign
The CPU code loops over the points in each zone and

performs operations on the variables, most of which are rep-
resented as matrices. The right of Figure 6 shows our base
CUDA implementation. kernel_loop_quadrature_point is
a kernel to unroll Az which loops over quadrature points.
The kernel on Fermi is faster than a six core Westmere X5660
CPU. Yet, it is still inefficient and dominated most of the
GPU time. We replaced it with six new designed kernels 1-
6. The formulation of these CUDA kernels are based on two
considerations. First, the kernels can be reused. Second,
they can be translated into linear algebra routines whose in-
terfaces are very similar to LAPACK’s. Except kernel 1-2,
the other kernels are all based on a LAPACK interface and
are of general purpose. Thus, it is easy for developers to
maintain the code and for others to reuse them. A major
change from the CPU code to our newly designed CUDA
code is that loops become batch-processed. Thus the chal-
lenge is to write GPU-efficient massively parallel batched
matrix operations.

The purpose of kernel 1-6 is to compute Az in (5).

Kernel 1,2 are used in evaluations of σ̂(~̂qk), and in com-
puting the adjugate of Jz. Independent operations are per-
formed on each quadrature point (thread). Each thread im-
plements routines for computing SVDs and eigenvalues for
DIM ×DIM matrices.

Kernel 3,4 evaluate ∇̂~̂v(~̂qk), Jz(~̂qk).
Kernel 5,6 Auxiliary kernels batched DGEMM, where

all matrices are DIM ×DIM . These kernels multiply Jaco-

bian matrices Jz, gradient of basis functions ∇̂ ~̂wi and stress
tensor values σ̂ together.

Kernel 7 One thread block works on one zone. Each
thread block does a matrix-matrix transpose multiplication
Fz = AzB

T, where Az is the output of the last kernel.
Therefore, this kernel can be also expressed as a batched
DGEMM, with the number of batches being the number of
zones.

Kernel 8 and Kernel 10 compute −F · 1 from (1) and
FT · v from (2), respectively. Each thread block does a

matrix-vector multiplication (DGEMV) and computes part
of a big vector. All thread blocks assemble the result vector.
The two kernels can be expressed as batched DGEMV.

Kernel 9 is a custom conjugate gradient solver for (1)
with a diagonal preconditioner (PCG) [16]. It is constructed
with CUBLAS/CUSPARSE routines [14].

Kernel 11 is a sparse (CSR) matrix multiplication by
calling a CUSPARSE SpMV routine [14]. The reason for
calling SpMV routine instead of using a CUDA-PCG solver
as in kernel 9 is that the matrix ME is block diagonal as
described in Section 2. The inverse of ME is only computed
once at the initialization stage.

A summary of the kernels is given in Table 2.

Table 2: Implementation on Kepler. Kernel 9 is a
set of kernels instead of one single kernel.
No. Kernel Name Purpose
1 kernel CalcAjugate det SVD,Eigval,Adjugate

2 kernel loop grad v EoS, σ̂(~̂qk)

3 kernel PzVz Phi F Batched ∇̂~̂v(~̂qk), Jz(~̂qk)

4 kernel Phi sigma hat z σ̂(~̂qk)
5 kernel NN dgemmBatched Auxiliary
6 kernel NT dgemmBatched Auxiliary

7 kernel loop zones AzB
T

8 kernel loop zones dv dt −F · 1
10 kernel dgemvt FT · v
9 CUDA PCG Solve linear system(1)
11 SpMV Solve linear system(2)

3.1.2 Memory Transfer and CPU Work
Input vectors (v, e,x) are transferred from the host to the

device before kernel 1, and output vectors
de

dt
are transferred

back from the device to the host after kernel 11. Whether

the vector
dv

dt
after kernel 9 or the vector −F · 1 after ker-

nel 8 is transferred to the host depends on turning on/off
the CUDA-PCG solver. The time integration of the output
right-hand-side vectors in the momentum (1) and energy (2)
equations, together with the motion (3) equation are still
done on CPU to get new (v, e,x) states.

Because of kernel 8,10, the two DGEMV kernels, we avoid
transferring the full matrix F which has large number of non-
zeros due to its high-order nature. This leads to significant
reduction in the amount of data transferred between the
CPU and GPU via the relatively slow PCI-E bus.

3.2 Optimization and Autotuning
Data streamed kernel 1,2. Each thread maintains a

DIM × DIM workspace for each matrix and a number of
scalar variables. In the base implementation, the workspace
related to the two kernels will be put in local memory by
compiler, even declared as registers. The register spill is-
sue is serious by inspecting the PTX code, especially on
Fermi(computing ability 2.0) whose registers are rather lim-
ited [11]. After separating the two kernels out, there is no
register spill issue related to their workspaces, especially on
Kepler(computing capability 3.5) which doubles the num-
ber of physical registers per SMX. Registers are critical to
the performance of these two kernels, because they involve a
large amount of scalar operations related with the workspace.
Figure 4 compares the performance of using register array

and that of being forced using local memory for workspace
on Kepler. By taking advantage of the more registers avail-
able on Kepler, kernel 2 achieved a 4x speedup.

Figure 4: Performance of kernel 1,2 with local mem-
ory and register arrays, respectively. Test is per-
formed on K20 for a 3D Q2-Q1 case.

Figure 5: Tuning of kernel 3 which achieved 60%
of theoretical peak performance on K20. N is the
number of matrices performed in each thread block.
The optimal N is found by auto tuning.

Kernel 5,6: Batched DGEMM of DIM × DIM matri-
ces. Each thread block performed multiple matrix opera-
tions. This avoided an unaligned memory access problem
in the case of one thread block reading one matrix size of
4 or 9. Threads inside block are configured flexibly. When
reading and writing, threads can be organized as one di-
mension to access linearly stored data in global memory.
While performing multiplication, they are configured as two-
dimension to naturally fit the matrix indexing. The number
of matrix performed per thread block can be tuned to find
an optimal occupancy. We use autotuning(Section 3.2.1)
to tune this number. We find 32 delivered the best perfor-
mance with an occupancy 98.3%. Figure 5 shows the effect
of tuning and we are able to achieve 60% of the theoreti-
cal peak performance of batched DGEMM on K20. Notice
the peak performance of batched is lower than that of the
regular DGEMM, since batches of small matrices can not
achieve the same GFLOPS as one large matrix. One n2 ma-

trix performs n3 operations, but k2 small (
n

k
)2 matrices only

perform k2(
n

k
)3 =

n3

k
operations with the same input size

[13]. The Batched DGEMM flop per element is
2k ∗DIM3

3k ∗DIM2

=
2DIM

3
. The bandwidth of K20 is 208GB/s, which means

it is able to get 26G data in double precision per second.
Since each element will perform 4/3, 2 operations, the theo-
retical peak performance on K20 is 35, 52 Gflop/s for DIM
= 2,3, respectively. cublasDgemmbatched has exactly the
same purpose but only achieves 1.3Gflop/s.

Kernel 3,4 implement custom batched DGEMM C =
AB. Notice here A and B are different from that in (5)
and (6). They are described in Table 3. In kernel 3,4, since
number of quadrature points << zones, the number of ma-
trices B is much smaller compared to that of A. Therefore
we choose to use texture memory to access matrix B in ver-
sion 1(v1), because we hope they fit the cache. We always
use shared memory to read A. It seems that reading B via
cached texture memory is still not as fast as shared mem-
ory as in v2, though shared memory will introduce synchro-
nization overhead. To reuse A, each thread block will loop
over all of the smaller matrices B, because if this thread
block only partially loops over B, A will be picked up in
another thread block which loops over the remaining part of
B. Similar to the optimizations in kernel 5,6, to increase
occupancy we fit multiple A in one thread block. This, in
turn, also helps the reuse of B, for the same reason as above.
Yet, too many matrices will overfill shared memory and re-
duce the occupancy which offsets the benefits of data reuse.
However; we can use auto tuning (see Section 3.2.1) to find
the balance point; v3 is the tuned result, as shown in Figure
7.

Table 3: Points refers to the quadrature points. For
example, in kernel 3 each quadrature point corre-
sponds to a matrix B and each zone corresponds to
a matrix A.

Name Num of A Num of B Num of C
kernel 3 zones points zones*points
kernel 4 zones*points points zones*points
kernel 7 zones 1 zones

Optimization of kernel 7. v1 is a naive implementa-
tion. Az and B were loaded directly from global memory,
as shown in Figure 7. In v2, we use shared memory to read
Az, while B is read in constant memory, since B is globally
shared by all thread blocks. v2 is a substantial improve-
ment, but still not satisfactory. As a further optimization,
v3 uses blocking technique. Blocking is the process of di-
viding a large matrix into smaller matrices to solve. Block-
ing is widely adopted in LAPACK. The main purpose of
blocking is to increase data locality and thus improve cache
performance. On GPU, blocking can deliver a second bene-
fit: reducing the amount of shared memory for each thread
block and allowing more thread blocks to reside on streaming
multiprocessors and thus enhance the parallelism. Blocking
can be done in different patterns. We found that accessing
columns in blocks by 1D dimension proved to be most effec-
tive, while blocking in rows has little benefits, probably be-
cause the data layout is in column major. Again, the optimal
blocking size can be found by our autotuning technique. An
alternative implementation of these batched DGEMM ker-
nels is to call cublasDgemmbatched [13] as shown in Figure
7.

Bandwidth. Because of the ”memory wall”, most appli-

cations are bandwidth bounded nowadays. Here we chose
to profile the bandwidth of the base and optimized code
on K20. Figure 8 shows the bandwidth of all the 3 level
memory, from on-chip memory L1/Shared to off-chip L2
and device memory. All the optimized kernels exceeded the
base implementation in bandwidth of L1/Shared and device
memory except kernel 3 in device memory, which instead
has very high bandwidth in L1/shared memory. Optimized
kernels achieved much higher bandwidth in L1/shared mem-
ory, because they exploited shared memory and/or registers.
Kernels 1,2 have streaming data which is more likely cached
by L2. Their bandwidth in L2 tend to be higher compared to
other kernels. Because on-chip memory is much faster than
off-chip memory, the bandwidth of on-chip memory has a
greater impact on performance.

Figure 7: The performance of kernel 3,4,7 on K20.
v1 is the straightforward implementation. v3 is the
optimized and tuned result.

Figure 8: Memory bandwidth of previous (base) and
optimized kernels. The theoretical peak bandwidth
of device memory of K20 is 208GB/s.

Kernel 8 and 10 can be viewed as batched DGEMV.
In our implementation, each thread block (zone) does a
DGEMV operation. An implementation involving CUBLAS
is to put cublasDgemv in streams of number zones, as rec-
ommended in the User Guide [13], since there is no batched
DGEMV routine in CUBLAS. However, the performance is
very poor, as shown in Table 4. Our custom kernel is 90x
faster than that of cublasDgemv, achieving 50 % of theoret-
ical peak performance of batched DGEMV on C2050.

Table 4: Custom kernel 8 and streamed cublasDgemv

implement batched DGEMV on one C2050. In this
test case, each small matrix is 81 by 8 and each vector
is 8. Number of batches (streams) is 4096.

streamed cublasDgemv kernel 8 theoretical
Gflop/s 0.2 18 35.5

Figure 6: A break down of kernel time of the base implementation (left) versus the redesigned and opti-
mized implementation (right). The CsrMv ci kernel time remains the same in the two implementations. It
dominates in the redesign (right) due to the increased performance of the other kernels

We implemented a custom CUDA-PCG solver(kernel 9)
from scratch. CUDA-PCG contains a SpMV and a dot
product routine only where we call CUSPARSE SpMV and
cublasDdot as shown in Figure 6. Kernel 11 is a sparse
matrix multiplication routine in CUSPARSE. Notice, this
SpMV routine is also needed in kernel 9. But kernel 11 is
only called once per time step. From Figure 6, we can see the
performance of SpMV is critical to the CUDA-PCG, since it
is the biggest component of CUDA-PCG. The CUDA-PCG
solver is outside of corner force. By comparing Figure 6 and
timing data in Table 1, we can see the optimized corner force
time becomes very small in overall time.

The impact of redesign and optimization is shown in the
right side of Figure 6. kernel_loop_quadrature_point is
replaced by kernel 1-6. Its percentage decreases to 25%
from 65% after optimization. The actual time of kernel
csrMv_ci_kernel (SpMV) does not change, but its percent-
age increases from 30% to 65%, because the total time is
reduced. Its percentage is big, because it is called many
times in one time step. Other kernels will only be called
once, except kernel 5 twice.

3.2.1 Autotuning CUDA kernels
The dimensions of the Jacobian matrix J and the total

stress tensor σ̂ depend only on the spatial dimension DIM ,
while the size of other matrices is a function of the finite
element order k. For example, ~̂wi(~̂qk) is 81 × 64 for Q2-Q1

finite elements and 375×512 for Q4-Q3 finite elements in 3D.
We propose an autotuning technique to adapt our kernels to
the order of the method. Tuning can cause a large difference
in performance, as shown in the figures above.

Our autotuing is based on the iterative time stepping na-
ture of CFD applications. First, we parametrize every kernel
as far as possible. Parameters include the blocking size in
kernel 7, number of matrices in kernel 5,6, etc. Second, we
set up a range of values for the parameters we want to tune.
Artificial values, like those exceeding the shared memory,
will be eliminated. Depending on how far we want to tune,
we may tighten or loosen the range, because it is easy to
end up with ten thousand possibilities with a few parame-
ters. This second step usually takes most efforts. In each
sampling period, the scheduler picks up a candidate value
and times it. After comparing all the candidates, the sched-
uler will give an optimal one. In our test, one sampling

period consists of forty time steps which will be averaged to
eliminate the noise.

3.3 CUDA + OpenMP Implementation of Cor-
ner Force

CUDA and OpenMP is used on Kepler K10 and Fermi
clusters, where only one MPI process is allowed to con-
nect to the GPU at a time. Multiple MPI processes will
be forced into a serialization if the GPU is in shared com-
pute mode. They will be prohibited if it is in exclusive
compute mode. This limitation usually requires the number
of GPU to match CPU cores, otherwise GPU and CPU uti-
lization will be limited. However, the number of CPU cores
is usually far more than that of GPU. Therefore, we adopt
OpenMP to deal with multi-core and CUDA to deal with
one K10 or Fermi in one MPI process. On Kepler K20, we
may turn OpenMP off, because MPI processes from multi-
core can use a subset of a shared K20 simultaneously due
to Hyper-Q (see Section 4.2) without causing the CPU core
idle.

In the corner force computation, after the launch of CUDA
kernels, control can return to a host thread prior to the GPU
completing work. The host thread will spawn OpenMP
threads and distribute a portion of the zones among the
threads. Each thread allocates private working space and
executes like normal serial code. There is no synchroniza-
tion between threads unless they exit the parallel region. A
synchronization between the CPU and the GPU is required
to complete the corner force calculation,because there is data
dependency in the following code. We use auto-balance to
find the ratio between CPU and GPU to ensure load bal-
ance. The idea of auto-balance of CUDA and OpenMP is
the same with autotuning. The scheduler will compare their
time to decide to move more or less work to each processor.
After a few sampling periods, the scheduler will converge to
an optimal ratio. Our tests shows that the convergence only
takes a few time periods as shown in Table 5.

Auto tuning is a convenient and robust tool. When the
code is ported on another architecture, the changes will be
detected and the load will be rebalanced automatically.

3.4 MPI Level Parallelism
The MPI level parallelism in BLAST is based on MFEM

which is a modular C++ finite element library [15]. At

Table 5: Ratio refers to the percentage of zones on
GPU. Zones are allocated on a six core X5560 CPU
and a C2050 GPU.

Problem Optimal ratio Convergence periods
2D: Sedov 75% 14

2D: Triple-pt 77% 12

the initialization stage (Step 2 in Section 2), MFEM takes
care of the domain splitting and parallel mesh refinement as
shown in Figure 9. Each MPI task is assigned a sub-domain
consisting of a number of elements (zones). Finite element
degrees of freedom (DOFs) shared by multiple MPI tasks
are grouped by the set (group) of tasks sharing them and
each group is assigned to one of the tasks in the group (the
master), see Figure 10. This results in a non-overlapping
decomposition of the global vectors and matrices and typ-
ical FE and linear algebra operations, such as matrix as-
sembly and matrix-vector product, require communications
only within the task groups.

After computing the corner forces, a few other MPI calls
are needed to handle the translation between local finite
element forms and global matrix / vector forms in MFEM
(Step 5 in Section 2). An MPI reduction is used to find the
global minimum time step.

Because computing the corner forces can be done locally,
the MPI level and the CUDA/OpenMP parallel corner force
level are independent. Each module can be enabled or dis-
abled independently. However, the kinematic mass matrix
MV in (1) is global and needs communication across pro-
cessors, because the kinematic basis is continuous and com-
ponents from different zones overlap. The modification of
MFEM’s PCG implementation needed to enable the CUDA-
PCG solver to work on multi-GPU, is beyond the scope of
the present work. With the higher order of the methods, CG
time will be less significant compared to corner force time.
Therefore, we only consider the CUDA-PCG solver for (1)
on a single GPU.

Figure 9: Parallel mesh splitting and parallel mesh
refinement

Figure 10: Zones assigned to one MPI task and as-
sociated Q2 DOFs (left); the DOFs at the boundary
of this subdomain are shared with neighboring tasks
(middle); groups of DOFs, including the local group
of internal DOFs (right).

4. TESTING RESULTS AND DISCUSSION
For our test cases we consider the 3D Sedov blast wave

problem (see [1] for further details on the nature of these

benchmarks). In all cases we use double precision. The gcc
compiler and NVCC compiler under CUDA v5.0 are used
for the CPU and GPU codes, respectively.

4.1 Validation of CUDA code
We get consistent results on the CPU and the GPU. Both

the CPU and the GPU code preserved the total energy of
each calculation to machine precision, as shown in Table 6.

4.2 Performance on A Single Node
Due to the new feature Hyper-Q of Kepler, multiple MPI

processes can run on a K20 GPU simultaneously. The K20
GPU is able to set up to 32 work queues between the host
and the device. Each MPI process will be assigned to a
different hardware work queue, enabling them to run con-
currently on the GPU.

In our test, the CPU is a 8 core Sandy Bridge E5-2670 and
the GPU is a K20. Unless explicitly noted, we always use
them to perform our tests in the following sections. In our
configuration, 8 MPI tasks share one K20. Only corner force
is accelerated on the GPU. Figure 11 shows the speedup
achieved by CPU-GPU over the CPU. We compared two
order of methods Q2-Q1 and Q4-Q3. When the order is
higher, the percentage of corner force increases, and GPU
acceleration benefits BLAST more. The overall simulation
time of Q4-Q3 compared to Q2-Q1 is 3.2x on the CPU, but
only 2x on CPU-GPU.

Figure 11: Speedup of CPU-GPU code over the
CPU. A 1.9x overall speedup is obtained using Q2-Q1

elements; 2.5x using Q4-Q3 elements.

4.3 Performance on Distributed Systems: Strong
and Weak Scalability

We tested our code on ORNL Titan which has 16 AMD
cores and 1 K20m per node. We scaled it up to 4096 com-
puting nodes. 8 nodes is the base line. For a 3D problem,
one refinement level will make the domain size 8x bigger.
We fixed a domain size of 512 for each computing node, and
used 8x more nodes for every refinement. From 8 nodes to
4096 nodes, the time for 5 cycles (steps) increase from 0.85 to
1.83 seconds, see Figure 12. The limiting factor is the MPI
global reduction to find the minimum time step after corner
force computation and MPI communication in MFEM (Step
5 in Section 2).

We also tested the strong scalability on a small cluster,
the SNL Shannon machine. It has 30 computing nodes, with
two K20m and two sockets of Intel E5-2670 CPU per node.
Figure 13 shows the linear strong scaling on this machine.
The domain size is 323.

Table 6: Results of CPU and GPU code for 2D triple-pt problem using a Q3-Q2 method; the total energy
includes kinetic energy and internal energy. Both CPU and GPU results preserve the total energy to machine
precision.

Platform Final Time Kinetic Internal Total Total Change
CPU 0.6 5.0423596813598e-01 9.5457640318651e+00 1.005000000001e+01 -9.2192919964873e-13
GPU 0.6 5.0418618040297e-01 9.5458138195986e+00 1.005000000002e+01 -4.9382720135327e-13

Figure 12: Weak scaling on ORNL’s Titan. Time is
for 5 time step cycles. The x-axis is the number of
nodes.

Figure 13: Strong scaling on SNL’s Shannon. The
x-axis is the number of nodes. The y-axis is run
time time on a log scale.

5. POWER AND ENERGY ANALYSIS
Generally, there are two ways to measure power. First

is attaching an external power meter to the machine; this
is from a hardware aspect. It is accurate, but it can only
measure the power of the whole machine. It is not able to
profile power usage of individual processors or memory. The
other way is estimation from a software aspect. We adopt
this way in our measurements.

5.1 Profiling CPU Power with Intel RAPL
From SandyBridge, Intel CPUs support on board power

measurement via the Running Average Power Limit (RAPL)
interface [8]. The internal circuitry can estimate current en-
ergy usage based on a model accessing Model (or sometimes
called Machine) Specific Registers(MSRs), with an update
frequency on the order of milliseconds. The power model
has been validated by Intel [17] to actual energy.

RAPL provides measurement of:

• The total package domain.

• PP0 (Power Plane 0) which refers to the processor
cores in a package.

• Memory which includes the directly-attached DRAM.

Figure 14 shows the power of two CPU packages and
their DRAM. For comparison purposes, we let one pack-
age(processor) busy, while the others we keep idle. The full
loaded package power is 95W with DRAM at 15W. The idle
power is slightly lower than 20W with DRAM almost at 0.
The TDP of the E5-2670 is 115W. Our observation 95W
(82%) confirms the AMD reports of the normal range of
Average CPU Power (ACP) in [7]. The test is a 3D Q2-Q1

case with 8 MPI tasks without GPU.

0 5 10 15

0
20

40
60

80
10
0

Blast Power Consumption
Tasks Split Between Processor 0 & Processor 1

Time (Seconds)

P
ow

er
 (W

at
ts

)
Processor 0 pkg_watts
Processor 1 pkg_watts
Processor 0 dram_watts
Processor 1 dram_watts

Figure 14: Power of two packages of Sandy Bridge
CPU. Package 0 is full loaded. Package 1 is idle.

5.2 Profiling GPU Power with NVML
Recently, NVIDIA GPUs support power management via

the NVIDIA Management Library (NVML). NVML pro-
vides an API to developers. NVIDIA also provides a high
level utility nvidia-smi which calls the same interface. It
only reports the entire board power, including GPU and its
memory. It has milliwatt resolution within +/- 5 W and is
updated per millisecond. Our CUDA kernels time is around
several to tens milliseconds for our target problem, so the
computation will not be missed by NVML.

Kernels aggregated in the corner force calculation are set
as a testing component, and kernels in CUDA PCG solver
is another component. Therefore, kernel aggregated power
usage is tested instead of individual kernels, since significant
coding is needed to separate a single kernel on GPU while
keeping others on CPU. We test the power usage of one K20
GPU in six scenarios. 1,2) Base versus optimized imple-
mentation with both corner force and CUDA PCG solver
enabled with 1 MPI task We call it overall in Figure 15. 3)
Optimized corner force (Q2-Q1) with 1MPI task. 4,5) Op-
timized corner force (Q2-Q1 and Q4-Q3) with 8 MPI tasks
running on the same GPU. 6) CUDA PCG (Q2-Q1) only
with 1 MPI task. The test case is a 3D Sedov problem with

the domain size 163, which is the maximum size we were
able to allocate with Q4-Q3 elements because of memory
limitation for K20. The GPU is warmed up by a few runs
to reduce noise. Our test shows that the startup power is
around 50W by launching any kernel. The idle power is 20W
if the GPU is doing nothing for a long time. The TDP of
K20 is 225W.

From the base versus the optimized in Figure 15 we can
see, the optimized code not only runs faster, but also lowers
the power cost relative to the base implementation. Since
both perform the same FLOPs, their main difference is in
how they exploit the memory. The memory power consumes
around 25% of total GPU power in various reports [5]. Stud-
ies have examined the power consumption of different com-
ponents of GPU [18, 19]. The power consumption of device
memory is much higher than on-chip memory. In the micro-
benchmarks of [19], the device memory power is 52, while
shared memory is 1 with FP and ALU only 0.2(normalized
unit). Their difference can be explained by their accessing
cost. Accessing on-chip shared memory can only take 1 cy-
cle, while accessing device memory may take 300 cycles [11].
It requires much more energy to drive data across to DRAM
and back than to fetch it from on-chip RAM. Because the
optimized kernels effectively exploited on-chip memory and
significantly improved the bandwidth, as shown in Figure 8,
the memory utilization efficiency is improved and power is
reduced.

From the corner force 1MPI and 8MPI cases, we can see
when the GPU is shared by 8 MPI tasks, its power usage
will be higher than 1 MPI (with the same domain size and
problem). We did not find any previous report about this
situation, but obviously this additional power cost should
come from the overhead of Hyper-Q. 1MPI corner force us-
ing Q2-Q1 elements has not saturated the GPU, therefore
its power is low. Compared to using Q2-Q1 elements, be-
cause the FLOPs and data of using Q4-Q3 elements is much
greater, its utilization and power consumption of GPU is
also higher.

The power usage of the solver (CUDA-PCG) using 1 MPI
task is higher than that of the corner force calculation us-
ing 1 MPI task as shown in Figure 15. This is because
CG(SpMV) is effectively memory bound due to its sparse
structure;the it is very hard to achieve memory bandwidth
efficiency comparable with dense operations such as those
used in the corner force calculation.

The CPU power with corner force accelerated on GPU is
shown in Figure 16. Both of the two processors are busy.
The total package power is around 75W and PPO at 60W.
Their difference is mainly the DRAM power. Compared to
Figure 14, CPU power is reduced by 20W. We tested various
orders of methods, but did not see any obvious difference.

5.3 Greenup
Similar to the notion of speedup which is usually used

to describe the performance boost, we define a notion of
greenup to quantify the energy efficiency [32].

Figure 15: One K20 power. Except denoted, all are
with a Q2-Q1 method. The stable value of y-axis is
more meaningful. The x-axis value is trivial, since
the initialization stage (Section 2) can be long when
GPU is not busy.

Greenup =
CPUenergy

(CPU + GPU)energy
=

=
CPUpower · CPUtime

(CPU + GPU)power · (CPU + GPU)time

=
CPUpower

(CPU + GPU)power
· Speedup

= Powerup · Speedup

where powerup and speedup are larger than 0. Powerup
may be less than 1, since CPU+GPU power may exceed that
of CPU only. Yet, the speedup is greater than 1. There-
fore the greenup will be larger than 1. Table 7 outlines
the greenup, powerup and speedup of BLAST code of Se-
dov problem. Speedup is from Figure 11. The CPU+GPU
power we used in Table 7 is by adding data in Figure 15 and
Figure 16 together. The hybrid CPU-GPU solution make
BLAST greener. It saved 27% and 42% of energy, respec-
tively for the two methods, compared to CPU only solution.
However, The use of GPU is more than energy and speedup.
Because the CPU power decreases, the power leakage and
failure rate of cores are also reduced. Applications are more
fault tolerant and runs faster, since the frequency of checking
points can be reduced.

Table 7: The CPU-GPU greenup over CPU for
BLAST code in 3D Sedov problems.

Method Power Efficiency Speedup Greenup
Q2-Q1 0.67 1.9 1.27
Q4-Q3 0.57 2.5 1.42

6. RELATED WORK
Incompressible flow computations on GPUs with stencil

computing were studied in [20, 21]. Strategies of assembly
of Galerkin methods on GPUs were discussed in [22, 25]. [23,
24] focused on solving the sparse linear system resulting from
FE discretizations. A high order discontinuous Galerkin FE
method applied in electromagnetic on GPUs was discussed

Figure 16: CPU power with GPU accelerating.

in [26]. L.Wang et al examined the limiting factors of scaling
on big CPU-GPU clusters in [27].

There are some reports comparing the power consumption
of GEMM routines on CPU/GPU[28, 29]. They were using
power meters and measuring the whole system power. [18]
studied the power and energy consumption of BLAS2 and
MAGMA Hessenberg kernel with NVML. PAPI provide an
uniform interface to measure AMD and Intel CPU power,
which in turn calls RAPL on Intel CPUs [30]. [31] used
RAPL to study the HPC system power allocation of CPU.

7. CONCLUSIONS
The BLAST code uses high order finite element methods

to solve compressible hydrodynamics problems. It requires
the assembling of corner force matrices and the solution of
both sparse and dense linear algebra problems. In this pa-
per, we redesigned the most computational intensive part of
BLAST for CPU-GPU clusters. Our goal is to maximize the
performance and lower the energy consumption of BLAST.

We redesigned a base CUDA implementation and mod-
ularized our new implementation into a set of linear al-
gebra routines. Our optimized routines exceed CUBLAS
library routines substantially in performance. Compared
to the base implementation, our redesign and optimization
achieved better performance per watt: resulting in 60% less
time to sultion and a 10% reduction in power consumption.
To adapt to high order methods, we further introduced an
autotuning technique to tune our CUDA kernels. Due to
their general purpose, these linear algebra routines can be
utilized by other applications.

Our proposed hybrid solution has proven to be very ben-
eficial in performance and energy efficiency, especially for
high order finite element simulations; reestablishing the ap-
peal of high order methods on GPUs. Compared to low
order methods, the speedup and greenup of high order finite
element methods are greater.

Acknowledgments
Implementations were done during an internship at LLNL.
Some optimizations were done at University of Tennessee,
Knoxville. The authors thank Barry Rountree for provid-
ing the CPU power graph. The authors would like to thank
the NSF and NVIDIA for supporting. The authors thank
the testing support of the Performance End Station PEAC
Project sponsored by DOE under Contract No. DE-AC05-
00OR22725. A portion of this work performed under the
auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-
07NA27344, LLNL-CONF-607852.

8. REFERENCES
[1] V.A.Dobrev, Tz.V.Kolev, R.N.Rieben. High order

curvilinear finite element methods for Lagrangian
hydrodynamics, SIAM J. Sci. Comp., 34(5), 2012,
606-641.

[2] http://www.top500.org, 2013

[3] http://www.green500.org/

[4] P.Wang, C.Yang, Y.Chen, Y.Cheng Power Gating
Strategies on GPUs, ACM Transactions on
Architecture and Code Optimization, Volume 8 Issue
3, October 2011.

[5] J.Zhao, G.Sun, G.H.Loh, Y.Xie Energy efficient GPU
Design with Reconfigurable Inpackage Graphics
Memory, ISLPED,12

[6] Whitepaper: NVIDIA Next Generation CUDA
Compute Architecture: Kepler GK110.
http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf

[7] ACP The Truth About Power Consumption Starts
Here: http://www.amd.com/us/Documents/43761D-
ACP-PowerConsumption.pdf

[8] Intel 64 and IA-32 Architectures Software Developer’s.
http://download.intel.com/products/processor/manual/

[9] https://developer.nvidia.com/nvidia-management-
library-nvml

[10] BLAST: http://www.llnl.gov/casc/blast/

[11] NVIDIA CUDA C Programming Guide v4.2,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[12] MAGMA: http://icl.cs.utk.edu/magma/

[13] CUBLAS User Guide,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[14] CUSPARSE User Guide,
http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation.

[15] MFEM: http://mfem.googlecode.com/

[16] M.Naumov, Incomplete-LU and Cholesky
Preconditioned Iterative Methods Using CUSPARSE
and CUBLAS, June 21, 2011.

[17] Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan,
A, E, Weissmann. Power-management architecture of
the Intel micro-architecture codenamed Sandy Bridge,
IEEE Micro, volume 32, no. 2, pp. 20âĂŞ27, 2012

[18] K.Kasichayanula, D.Terpstra, P.Luszczek, S.Tomov,
S.Moore, G.D.Peterson. Power Aware Computing on
GPUs, SAAHPC, 2012.

[19] S.Hong, H.Kim. An Integrated GPU Power and
Performance Model, ISCA, 2010.

[20] D.A.Jacobsen, J.C.Thibault, I.Senocak. An
MPI-CUDA Implementation for Massively Parallel
Incompressible Flow Computations on Multi-GPU
Clusters, 48th AIAA Aerospace Sciences Meeting and
Exhibit, 2010.

[21] J.C.Thibault, I.Senocak. Accelerating Incompressible
Flow Computations with a Pthreads-CUDA
Implementation on Small-Footprint Multi-GPU
Platforms, The Journal of Supercomputing, 59(2),

693-719.

[22] C.Cecka, A.Lew, E.Darve. Assembly of finite element
methods on graphics processors, Numerical Methods in
Engineering. Volume 85, Issue 5, 4 February 2011.

[23] J.Bolz, I.Farmer, E.Grinspun, P.Schroder. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and
Multigrid. ACM Transactions on Graphics, 2003;

[24] M.Geveler, D.Ribbrock, D.Goddeke, P.Zajac, S.Turek.
Towards a complete FEM-based simulation toolkit on
GPUs: Unstructured grid finite element geometric
multigrid solvers with strong smoothers based on sparse
approximate inverses, Computers & Fluids, Feb,2012.

[25] A.Klockner, T.Warburton, J.Bridge, J.S. Hesthaven,
Nodal discontinuous Galerkin methods on graphics
processors, Journal of Computational Physics Volume
228, Issue 21, 20 November 2009.

[26] Godel, N. Nunn, N. Warburton, T. Clemens, M.
Scalability of Higher-Order Discontinuous Galerkin
FEM Computations for Solving Electromagnetic Wave
Propagation Problems on GPU Clusters. Magnetics,
IEEE Transactions, Aug 2010.

[27] L.Wang, W.Jia, X.Chi, Y.Wu, W.Gao, L.Wang. Large
Scale Plane Wave Pseudopotential Density Functional
Theory Calculations on GPU Clusters, SC11, 2011.

[28] S.Huang, S.Xiao, W.Feng. On the Energy Efficiency of
Graphics Processing Units for Scientific Computing,
IPDPS, 2009

[29] Y.Abe, H.Sasaki, M.Peres, K.Inoue, K.Murakami,
S.Kato. Power and Performance Analysis of
GPU-Accelerated Systems, USENIX, 2012 Worshop on
Power-Aware Computing and Systems

[30] V.M. Weaver, M.Johnson, K.Kasichayanula, J.Ralph,
P.Luszczek, D.Terpstra, S.Moore. Measuring Energy
and Power with PAPI, Parallel Processing Workshops,
2012 41st International Conference on Sep, 2012

[31] O.Sarood, A.Langer, L.Kale, B.Rountree, B.Supinski
Optimizing Power Allocation to CPU and Memory
Subsystems in Overprovisioned HPC Systems, IEEE
Cluster 2012

[32] D.Lukarski, T.Skoglund. A priori power estimation of
linear solvers on multi-core processors, UPMARC
Winter Meeting 2013

	1 Introduction
	2 The BLAST Algorithm
	3 Hybrid Programming Model
	3.1 CUDA Implementation
	3.1.1 CUDA Code Redesign
	3.1.2 Memory Transfer and CPU Work

	3.2 Optimization and Autotuning
	3.2.1 Autotuning CUDA kernels

	3.3 CUDA + OpenMP Implementation of Corner Force
	3.4 MPI Level Parallelism

	4 Testing Results and discussion
	4.1 Validation of CUDA code
	4.2 Performance on A Single Node
	4.3 Performance on Distributed Systems: Strong and Weak Scalability

	5 Power and Energy Analysis
	5.1 Profiling CPU Power with Intel RAPL
	5.2 Profiling GPU Power with NVML
	5.3 Greenup

	6 Related Work
	7 Conclusions
	8 References

